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Modal Circuit Decomposition of Lossy
Multiconductor Transmission Lines

M. AbuShaaban and Sean O. Scanlan, Fellow, IEEE

Abstract— General multi-conductor transmission lines are in-
vestigated using modal analysis. This is performed by finding
the solution to the telegrapher’s equations for general impedance
and admittance per unit length matrices Z and Y, respectively,
and obtaining the transmission matrix in terms of 7 and Y.
Hence, the modal circuit is sought, resulting in a cascade of two
n-port ideal transformers and = wuncoupled transmission lines.
A set of necessary and sufficient conditions are established and
a construction method is given if the conditions are satisfied.
It is shown that the modal circuit will always exist for general
homogeneous constant parameters and for the nonhomogeneous
case under the quasi-TEM assumption the existence depends
on the geometry. The modal circuit is extended for frequency
dependent parameters and a set of sufficient conditions are given.

1. INTRODUCTION

HE modal circuit for multi conductor lines has been in use

for some time now; it was analyzed in Uchida [1] in 1967
for various homogeneous lossless cases. Since then it has been
used in SPICE [2] to simulate coupled lines. Chang [3] used
it with the method of characteristics for the transient analysis
of coupled lines. However. there is no detailed study for the
necessary and sufficient conditions for the existence of the
modal circuit. Chang proved the existence of the modal circuit
for lossless nonhomogeneous lines in 1970 [4]. Chang [3] also
proved the existence of the model for homogeneous lossy
coupled lines with the extra assumption that the resistance
matrix F is diagonal. It turns out that this is not necessary
for the existence of the modal circuit. This paper aims to
provide the analysis of the modal circuit and to obtain the
necessary and sufficient conditions for its existence. This paper
is divided into five sections. In Section II, the telegraphers
equations are set up for the case to be studied and the solution,
which is the transmission matrix, is obtained. In Section III,
the decoupling of the transmission matrix is investigated and a
set of necessary and sufficient conditions is obtained. Section
IV presents special cases where decoupling is investigated.
Finally. Section V provides the conclusion.

II. TELEGRAPHERS EQUATIONS

The Telegrapher’s equations for the transmission line shown
in Fig. 1 are given as follows:

dv
— =-Z1 1
dx M
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Fig. 1  General coupled transmission line.
dr
=YV 2
I (2)
Z =R+ jwL,
Y =G+ jwC 3)

where, R, L, C, and (G are parameters per unit length.
Physically the coupled line structure is taken to have n 4 1
lines numbered O to n as in Fig. 1 with line number O taken
as ground. The voltage V,(z) is defined as the difference of
absolute potentials ¢;(x) — ¢,(x), where the potential ¢(z)
along the line is taken relative to zero voltage at infinity
or any other convenient point. This formulation allows the
inclusion of lossy and lossless ground lines in all of the
following analysis. For now, the only assumptions are that
matrices 12, L. C, and G are bounded real matrices (at any
frequency) and independent of distance x. This is the only
assumption needed to obtain the transmission matrix for the
given structure. The solution is obtained by setting up the 2n
first order differential equations using the vector P defined as,

P(z) = [‘;((f)) } . ()

The orientation of voltages and currents are as shown in Fig.
1. Hence, (1) and (2) can be rewritten as

P _ _up )
dx
where
0o —-Z
M = [—Y 0 } 6)

This system of (5), has a solution represented as an exponential
power series that will converge for all x (see Appendix A).
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The solution can be written as in (7), shown at the bottom of
the page. From the definition of the problem we now have

ro-[{] ro- 4]

P(1) = exp (M1)P(0). ®)

Therefore, the transmission matrix for the complete coupled
line structure, call it A, is exactly the inverse of matrix
exp (M1). The inverse is achieved using the usual exponential
identity which holds for matrices [5],

exp (Mz) exp (—Mz) = exp[M(z - z)] = 1,

= exp~! (Mz) = exp(—Maz). )

Note: 1,, is nxn identity matrix. This result is obtained with no
diagonalization so that no unnecessary conditions are implied
in the result. The result is re-written by changing the indexing
variable

i (:ZY)kl% el (Zy)kl%—l-l
Al | & O 2k + D) .
ZY kl2k+1 el (Yz)kl2k
YZ @k+ DT 25!

This expression can be compared to previous results [6] if we
assume that there is a matrix + such that v2 = ZY. Usually,
~ is the result of eigen analysis of the ZY matrix. Using
the series representation of cosh and sinh functions we may
represent (10) as

cosh(vyl)  sinh(y)Z,

A= Y, sinh (1)  cosh® (y]) (n
where
Zw =712,
Y, =Y~ L (12)

This is the usual expression for the transmission matrix of a
coupled transmission line. However, here it is proved that it
applies for the general case of a nondiagonalizable ZY matrix.
Another approach to reach this result was followed by Faria
[6] using the Jordan Canonical Form of matrix ZY.

III. DECOUPLING INTO THE MODAL CIRCUIT

Tracing the origins of the modal method there are principally
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approach decouples the power transferred on the multi con-
ductor line into n separate excitations. We will show that both
methods lead to the same set of conditions when applied to
the general case as in (1) and (2). The final part of this section
will address the question of frequency dependent parameters.

A. Eigen Analysis

The modal method of decoupling the multiconductor trans-
mission line is based on n X n ideal transformers appended
on both sides of the transmission line, to model coupling,
and 7 uncoupled single lines as shown in Fig. 2. The trans-
mission matrix for the ideal transformer can be found from
the conservation of power between input and output and the
independence of voltages and currents. Let,

T, 0
=[5 2}
P’in: out
= ViI} =V, I;
=> WL =V15, YV, I
= T,Ti=1,
= T,=T,
T,=T"" (13)

where (*) is the complex conjugate. For the circuit as in Fig.
2 to model the coupled transmission lines we have,

-1
Acoupled = AtAuncoupledAt

= Auncoupled :At_lAcoupledAt- (14)
Hence, Ayncoupled 18
. (ZY kZZkz 1 12k+1 -1
Z @ T Z i)
\ (ZY kg2t L= (YRR
TYZ @+ L TkZ:O @0 L
(15)

For the model to exist the matrix in (15) must consist of four
diagonal matrices. This leads to the following set of necessary
and sufficient conditions. For justification for the necessity and
sufficiency of these conditions see Appendix B.

two approaches of achieving the decoupling of the multi- Tl2YyT =D, (16)
conductor coupled lines. The usual mathematical approach is At~
. ) . - T°Z1T" =D, amn
based on matrix theory and the eigen analysis of matrices. The .
other approach is based on physical reasoning as presented T YZ =D (18)
in [7] for lossless homogeneous coupled lines. The latter T'YZTY = D,. (19)
oo ZY n/2 © 7Y (n—1)/2 pn
> O Sy Py
n= n=0, n'
P(z) = exp (Mz)P(0) = o nodd . P(0) 0

n=0,
n odd

| (ZY) =D/ 2gn

= (Y Z)" 2
Z

n=
n even
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Where, Dy, Dy, Dy, and D, are diagonal matrices. These
conditions are sufficient and necessary for the existence of the
modal circuit. However, they are not independent and can be
reduced to just (17) and (18) since if they are satisfied then (16)
and (19) are automatically satisfied for Z and Y symmetric.
Therefore, (17) and (18) are necessary and sufficient for the
existence of the modal equivalent circuit if T' is also real
and independent of frequency. This can be incorporated in
the equations if we expand Z and Y in terms of R, L, C,
and G matrices, using the fact that (17) and (18) should be
satisfied for zero and close to infinite frequencies, leading to
the set of conditions.

TRT" ' =D; (20a)
T-LT' ' =Dy (20b)
T'GT = Dy (20¢)
T'CT = Dho. (20d)

Thus the existence of real nonsingular matrix 7' to satisfy (20)
is a necessary and sufficient condition for the existence of
the modal circuit. This is the main result of this paper, that
is, the physical existence of the modal circuit is transformed
into a set of mathematical conditions that can be simplified
using matrix theory. To simplify the testing procedure of
conditions (20) the properties of matrices R, L, C, and G
have first to be established. It can be shown that matrices L
and C are nonsingular [4]. For matrices R and G that model
different mechanisms for loss in the multi-conductor line,
they are necessarily strictly positive definite i.e., nonsingular.
Thus conditions (20) are transformed into simpler equivalent
conditions which can be easily checked for any arbitrary case.
The proof is provided in Appendix C.

CRC, =C,RC 21a)
GRC, = C,RG (21b)
CRG =GRC. @lc)

In obtaining conditions (21) the symmetry of all R, L, C, and
G matrices was used and the fact that L and R are nonsingular.
Note that (21) are symmetric in R, L, C, and G matrices since
all of them are nonsingular. The above form (21) is chosen as it
is the most convenient form. Since all matrices are symmetric,
the conditions are equivalent to all RHS or LHS products being
symmetric. The conditions (21) are obtained using the fact that
the conductor loss is present and the matrix R is nonsingular.
However, if the case arises that only dielectric loss is present
without conductor loss, the sufficient and necessary condition
becomes

CLG =(GLC. (22)

Of course, this condition is implicit in (21) when R is present.

B. Power Decoupling

The simplest approach to present this method is to outline
the analysis for the lossless homogeneous case given in [7] and
then generalize the result to the general case in (1) and (2).
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n uncoupled lines

Ideal n-port

i H { | Ideal n-port| |
! Trar::former i | Transfozl"mer i
. t N B
. Ay P

Fig. 2. Modal circuit of n decoupled lines

As in [7] for the lossless homogeneous case the telegraphers
equations, for the structure in Fig. 1 reduce to
2Y7

+WILCV =0 (23)
dx?
2
41 +w?CLI =0 (24)
dz?
where
LC = pel,. (25)

From (23)-(25) the solution is found to be of the usual form
of exp (+jbx) where, b? = pew?. Applying (1) and (2) to
the positive going wave [i.e., exp (—jbz) only] we can relate
voltages and currents

1

I= cv 26)
v HeE (
1
V= LI. 27
NI 27

Following the basic idea in [7], assume that there are n
excitations (modes of propagation) of voltages Vi, ---, V,.
and currents Iy, -+, [, and terminal voltages and currents
are a superposition of these modes. i.e.,

V= i UmjVJ
7=0

I= i im, 1.
1=0

Where. V, and I, are the modal excitations for mode j and vy,
and 4., are scalar factors (possibly complex) of superposition.
The modes are taken as orthogonal if,

(28)

1 y* . .
V=0, Vi#j (29)
From (28) and (29) we can deduce the following:
P=V*
=3 > vmin VI (30)
=1 j=1
=3 Ui VI
=1
=) P (31)
=1
taking
P, =vmith, (32)
= VI =6,. (33)
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We can use (26), (27) to find the equations defining V;, I;.
using (33),

VIOV = Juesi; (34)
LT = sy (35)

Wiiting the result in matrix form, and using the fact that L
and C are real symmetric matrices, in which case 7" and F'
will also be real.

T'CT =D (36a)
FILF =D (36b)
T'F = (36¢)
D = /jiel, (36d)

where T is the matrix who’s columns are I;. Equation (36c¢) is
actually (33) rewritten in matrix form. These equations actually
represent a change of basis, or physically a superposition of
independent modes, in which the capacitance and inductance
matrices are represented by diagonal matrices i.e., no coupling.
Now the above procedure is applied to the general cases as
in (1) and (2).

2
‘fi Y Zyv =0 37
2
371 ~YZI=0 (38)

where Z and Y are defined as in (3). Assuming the existence
of modes, as before, mode ¢ propagates with a propagation
constant of v,. In general, ; will depend on frequency. Then
for the positive going wave for that mode we have, from (1)
and (2)

Vi =41 Z1,
I =~7YV,.

(39

(40)

Applying the same power decoupling procedure as before we
get

VitY*V* =776

I,LtZtIJ* — %6“.

41)
(42)

We can write the result as in (36) by using the fact that the
modes (excitations) should be independent of frequency and
that R, L, C, and G are assumed to be constants with respect
to frequency. Writing the result in matrix form, for R, L, C,
and G real symmetric matrices

T'CT* =D, (43a)
T'GT* =D, (43b)
F'RF =D, (43c)
F'LF = D, (43d)
T'F* =1,. (43e)

This is a direct generalization of (36). Hence, the problem
of existence of the modal circuit reduces to the existence of
matrices T and F' such that (43) are satisfied. If there is a
matrix 7' to satisfy (43) it will also be real, as shown in
Appendix C. Hence, (43) are exactly the same as the conditions
20).
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C. Frequency Dependent Parameters

For frequency dependent parameters the matrices L, C, R,
and G depend on frequency in a nontrivial manner. The trivial
case occurs when the frequency dependence can be factored
out of the matrix resulting in a constant matrix with frequency
dependent scalar. This case is part of the constant parameters
as above. The model for the general case, still as in Fig. 2,
is an ideal transformer and n uncoupled lines with frequency
dependent parameters. Physically this case corresponds to the
quasi-TEM approximation with e.¢s, inductance including
internal inductance and loss that are frequency dependent.
The above procedure can only provide sufficient conditions
since the transition from conditions (17) and (18)—(20) will
preserve the sufficiency but not in general the necessity of the
conditions. Thus the set of conditions (20) provide sufficient
conditions if they are satisfied for all frequencies with T
a constant real matrix. A sufficient condition for the above
statement is that every matrix commutes with itself and all
other matrices for all frequencies. The proof is discussed in
[8] and [9]. ie.,

[R(w1), R(wa], [C(w1), C(wa], [G(w1), G(ws] =0

[L{w1), R(wa], [L(w1), C(we], [L{w1), G(wa] =0

[C{w1), R(wa], [C(w1), C(we], [R(w1), G(wa] =0
[Lwr), L{wz] =0 (44)

Vwi, ws and [A, B] = AB — BA.

These conditions are quite hard to check numerically and
practically can only be applied in symbolic form. Nevertheless,
there are cases where they can be applied.

IV. SPECIAL CASES

The conditions (21) and (44) allow a general, unified,
investigation of the coupled lines. However, there are a number
of special cases that need to be considered separately in order
to note possible simplifications to conditions (21) and/or to
compare with previous results.

A. Lossless Homogeneous

This case was the first to be studied in the context of coupled
line structures since this is the only case where true TEM wave
propagation exists. The other cases are approximations to this
case using perturbation theory. In this case,

R =0,
G =0,
L =peC1 (45)

then all that is required is to diagonalize the capacitance matrix
C, which is symmetric, and we are guaranteed [17] to find a
matrix T to satisfy (20a) which, because of (45) will then
also satisfy (20b). Each capacitance per unit length value,
C,, for the n uncoupled transmission lines will be one of the
eigenvalues of C, and hence real and positive. The inductance,
L; = euC; 1, since the eigenvalues of the inverse of a matrix
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are the reciprocal of the eigenvalues of that matrix. In this case
we end up with 7 lossless homogeneous uncoupled lines.

B. Lossless Nonhomogeneous

This case corresponds to the quasi-TEM approximation
where the transmission line characteristics are close to those
of a homogeneous line with dielectric permitivity e.s; and
with TEM wave propagation. This case is extensively covered
in the literature since most of the practical structures for
digital computers and microwave circuits, mostly microstrip
geometry, are of this class. The general solution has been
proven by Chang [4] who provides an explicit construction
method. Thus the treatment of this case is mainly given as
part of the general treatment of the coupled lines. In addition
the method to find the matrix 7" for the model is achieved by
a different numerical method using the Cholesky Factorization
which is standard numerical procedure for such problems. In
this case

R =0,
G =0,
L =peCt (46)

where C, is the air capacitance,and we need to simultaneously
congruence diagonalize C', and C' by a matrix T'. This is done
by taking the inverse of (20b) to get, using (46)
T'C,T = Dy,
TCT = Dys.

@7
(48)

It is shown that such a matrix exists (see Appendix C). Hence,
each inductance value L, for the n uncoupled transmission
lines will be an eigenvalue of L. The C, will be one of the
eigenvalues of the matrix C. In this case we end up with n
lossless nonhomogeneous uncoupled lines.

C. Lossy Homogeneous

This case corresponds to the quasi-TEM approximation
to the TEM wave propagation using perturbation theory.
However. if the loss is due to dielectric loss then the wave
is still TEM with complex ¢, and it will be subclass of case
(A) rather than this case. This will be reflected in the analysis
where a different problem will result only if matrix R is
nonzero. For a discussion of electromagnetic wave propagation
in transmission lines with conductor loss refer to Colling
[10]. The modal circuit for this case is proven by Chang
[3] under the assumption that R is diagonal, a condition
not assumed in this paper. The quasi-TEM approximation for
coupled transmission lines with lossy conductors is achieved
by assuming that the transverse currents in the conductors
are negligible compared with Jongitudinal currents. Hence,
losses in the conductors due to the transverse currents are
neglected and only losses due to longitudinal currents are
considered. Therefore the resistance matrix R will be diagonal.
However, in the case of lossy ground, the ground resistance
will be added to each entry of the matrix R and it will not
be diagonal. Chang’s method could be extended by using
n + 1 conductors and ground at infinity, this, however, is an
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unnecessary increase of the order of the problem and can, in
any case, be recovered from the present general analysis. In
this case,

a=2¢,
€

L =peC L. (49)

And we only need to simultaneously diagonalize R and L,

with say 1, where T will also satisfy (20c¢) and (20d) using

(49). Then we only need to satisfy.
T'RT" =Dy
T_lLTt71 =Dy

(50)
(G

as in case (B) such a matrix T will exist, (Appendix C).
Hence, in this case T' can be used for the ideal transformer.
For the parameters of the n uncoupled lines we can use the
eigenvalues of the corresponding matrices. Note that this case
is similar to (A) L, = ueO;l, where we have n equivalent
lossy homogeneous lines. Also if only dielectric loss is present
we only need to diagonalize L, or C, in order to achieve the
modal circuit which is as in case (A).

D. Lossy Nonhomogeneous

This corresponds to the quasi-TEM approximation with
approximations as in cases (B) and (C). Analysis in the
literature has been for simple cases only, i.e., two conductors
and to the authors knowledge there has never been a detailed
study of the existence of the modal circuit. Unfortunately, in
general there is no matrix 7" that satisfies (20). There exist
pathological examples (see Appendix E) where even the matrix
ZY is nondiagonalizable. Such a 7' can be found if and only
if L, C. R, and G satisfy the relations (21). A construction
method for T is provided for this case in Appendix C. If
R. L, C, and G commute then (21a)-(21c) are satisfied and
the resultant 7" will be orthogonal (see Appendix D). Hence,
existence of the matrix 7" depends on the geometrical structure
of the transmission line, and each structure should be treated
separately. Numerically the test can be applied very easily
utilizing a suitable error limit based on the precision of the
evaluated parameters and the arithmetic used in calculations.

E. Perturbation Method

The perturbation method given by Harrington [11] is a
further approximation within the quasi-TEM assumption, and
leads in general to a modal equivalent circuit. This fact
is due to the assumption that the losses are so small that
they do not affect the imaginary part of the propagation
constant, and the modal voltages and currents will be the
same as in the lossless case. This assumption cannot be
Justified from general symmetric perturbation of the matrices
in (52) and (53). If such perturbation is applied, both the
eigenvalues (propagation constants) and the eigenvectors (the
modal voltages and currents) will have linear dependence upon
the perturbation. This is given in the theory of perturbation
of linear operators as proven by Rellich [12]. Therefore the
fact that the perturbation will have a lesser effect on the
eigenvectors than the eigenvalues is taken as a postulate, rather
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than a result, based on practical and possible analytical jus-
tification arising from electromagnetic analysis of the general
case. Under this postulate the perturbation of the coupled lines
is equivalent to the perturbation of each of the uncoupled lines
in the modal circuit separately. The method used in [11] is
based on (41) and (42) rewritten here in matrix form for the
general lossless case

C =M VM (52)
L=Mv, M (53)
MM =1, (54)

where M, and M; are matrices whose columns are the modal
voltages and currents, respectively. V,, is the diagonal matrix
of propagation constants. Harrington obtained matrices L and
C from solving the electrostatic problem to find C and C,,
C, being the air capacitance of the same geometry. Then the
matrices M, and M, are established through eigen analysis
of the matrices L and C. This is always possible as shown in
cases (A) and (B). Amari [13] suggested a way of finding
the matrices L and C by first finding mode currents, A,
and propagation constants, V,, directly from the solution
of the electromagnetic problem and then applying (52) and
(53) to obtain L and C. However, equations in [13] contain
transmitted power as a variable in each of the equations in
(52) and (53). This however can always be cancelled out by
using the superposition given in power decoupling analysis in
Section II, or mathematically using the fact that the transmitted
power is positive nonzero, and scalar multiplication of an
eigenvector will also result in an eigenvector. Thus (52) and
(53) present a more efficient method for finding matrices L
and C for the lossless case. In either way (52) and (53) can
always be obtained with V,, M,, and M; real matrices. The
attenuation constants for each mode are evaluated as in {11}
using the modal currents and voltages from the following
formulas:

P,
L=t 55
ae =5 (55)
P,
g == (56)
where
P=Vil =1. (57)

As above V', I* are voltages and currents of mode . P, and
P, are the power loss per unit length due to conductors and
dielectric loss, respectively and P, is the transmitted power
normalized as above. Following the analysis in [11] yields the
following equations, {shown in Appendix F):

C =MV, M} (58a)
L=M""V M (58b)
R=M!"P.M™ (58¢)
G =M; Py M. (58d)

Note that (58) are the same as conditions (20) since V;,, P,
and P; are diagonal matrices. Hence taking T' = M, yields
the modal circuit. In applying the above method, it is essential
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to assume that the real part of the propagation constant is
much smaller than the imaginary part for every propagation
mode. If the modal circuit is obtained using the parameters
in (58) the propagation characteristics of the uncoupled lines
will be different from those obtained by Harrington’s method.
This results from the assumption that loss will not affect the
imaginary part of the propagation constants, an assumption
which is assumed by Harrington and not in the current
paper for the evaluation of the modal parameters. Thus using
this method the real and imaginary parts of the propagation
constants are

B =— (59)
Up
P,
ap, = Pet+ Py (60)
2
while for the modal circuit they are
ZnYml| — Real (Z,, Y,
= [Tl R Caa)
_ Im(Z,Yn)
T (62)

where
Zi =Ry + jwihlyy,,
Y =Gm + jwCyy,
are the immitances of mode m or equivalently the immitances

of the mth uncoupled line. Hence using the dimensionless
variables r and g as perturbation parameters defined as

R,

r=—7- I (63)
G,

= — 4

I=oC 64

we get the ratio of the two parameters as a power series in r
and g [without O(g*) and O(r*) terms]

2 2+ L 402

Bm (g - 7‘) 2 (g'r)s
Zmo_q _
B, TTg  ter 32 256
5gr
2 _ 297 2
a_m=1+(g_r)2+g7-3g 5 -+ 3r
an 8 32
13(gr)*

256 (65)

which shows the correspondence of the two values for rel-
atively low loss. The above procedure cannot unfortunately
be extended to coupled lines given by the full wave analysis
method as presented in [14] since cross mode powers are not,
in general, negligible. Hence, for such cases conditions (21)
or (44) apply.

F. Rotational Symmetry with Frequency
Dependent Parameters and Each Conductor
Coupled to All Other Conductors

The rotational symmetry is one of the rare cases where
the problem can be solved, i.e., finding 7', for the most
general case of frequency dependent parameters without even
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Conductors

Fig. 3. Example of coupled lines with rotational symmetry.
determining the matrices R, L, C, and G. As shown in Fig. 3
the conductors can be of any shape, the only restriction is that
rotational symmetry has to be observed. In this case the most
general structure for matrices R, L, C, and G is a Toeplitz
Symmetrical matrix, where the parameters of the matrix, i.e.,
Qo -+ - 0n—1, would be functions of frequency. The resultant
matrix is of the form.

aQ ay a2 a3 An—1

a1 ap a1 a2 A2

a2 a1 ag a1 An—3

a3 @2 a1 ag Un—4 (66)
An—-1 On-2 Gp-3 Oapn_4 - -- ¢0]

where a;=an; Vi=1,---,n—1. (67)

The condition (67) is due to the rotational symmetry. The
advantage of such a structure is that all matrices of the form
(66) commute with each other and there is an orthogonal
matrix 7" (See Appendix G) that will diagonalize such matrix
for any values of a, - --a,_1. The procedure of constructing
T is given in [5].

G. Simple Microstrip Structure Without Edge
Effects but with Frequency Dependence

This case represents the microstrip structure as in Fig. 4,
with each conductor linked to its nearest neighbor, where
the coupling parameters are independent of the conductor
index but are frequency dependent. This case is suitable for
printed circuit boards and coupled microstrip lines with a
large number of conductors and weak coupling but dispersion
is present. This case was analyzed for the case of lossless
nonhomogeneous lines by Romeo [15] but the given procedure
is valid for more general cases. The general R, C,, C, and G

matrices are of the form

[Ay Am 0 0 0
Am Ao An O 0
0 ) ’ 0 0
o0 e T
0 0 A, Ay A,
0 0 0 A, Ao
0 0 0
0 0
— Aol + 4, |° R
0 0 1 0 1
0 0 0 1 0
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Conductors

Fig. 4. Example of microstrip structure.

where A, and A,, can be frequency dependent. All that
is required in such a case is to diagonalize the last matrix
with ones above and below the diagonal. The matrix T to
diagonalize the above matrix is given in [15]. Hence, for
such structure with possible frequency dependent parameters
the modal circuit will exist and the uncoupled line will have
frequency dependent parameters.

V. CONCLUSION

The necessary and sufficient conditions for the existence
of the modal circuit for the case of constant parameters
and sufficient conditions for the case of frequency dependent
parameters are given. The model is shown to exist for a
number of important practical configurations without addi-
tional conditions to the necessary conditions. A construction
method is also provided if the conditions are satisfied to
produce the parameters of the model which are the decoupling
matrix and the parameters for the n uncoupled lines. The
analysis presented here will facilitate derivation of other
equivalent circuits for the coupled transmission lines with or
without ideal transformers analogous to the lossless case. The
model presented will also allow considerable improvements
in numerical simulation and transient analysis. For using
the method of waveform relaxation [3] it provides a set of
necessary and sufficient conditions for its applicability and
using convolutions as in [16] the number of convolutions per
time step is reduced from O(n?) to O(n). Further work is
continuing in extending the model to wider applications and
to find new models.

APPENDIX A

The series for exp (M) converges for all z and M complex
bounded matrix of order n X n.

The proof is given in [5]. The matrix exponential is evalu-
ated from the fact that, for M as in (6)

(ZY)P/? 0
, 0 (Y Z)/? p even
M = 0 (zZy)-D/27 ‘
~Y(ZY)P-1)/2 0 podd
(69)
APPENDIX B

To prove conditions (16)—(19) the only non trivial step is
that,

oo y
G o
T ———T
s ™
is diagonal V [ if and only if matrix
TZYT! ' (71)

is diagonal.
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Proof: That (71) is sufficient for (70) is straightforward.
Conversely since we have it for all 1 then choose 0 < [ < 1.
Hence the term with 7'ZY T~ will dominate and for the result
to be diagonal this matrix has to be diagonal.

APPENDIX C

There exists matrix 7" such that for A, B, C, and F real,
symmetric, matrices, A is strictly, positive definite, (nonsin-
gular) matrix

T*AT =D, (72a)
T'BT = D, (72b)
T'CT =D, (72¢)
T'ET =D, (72d)
if and only if A, B, C, and F satisfy
BA™'C=CA™'B (73a)
BA'E=EA"'B (73b)
EA'C =CA'E. (73¢)

Proof: Here we will show that the above problem is
equivalent to a simpler form and then use the result of
Appendix D to show the equivalence of the conditions (73).
The existence of T that satisfies (72) is equivalent to the
existence of 77 such that

TiB'Ty = Dy (74a)
TiC'Ty = Do (74b)
TIE'T) = Dy (74¢)

13T =1,. (74d)

Since A is real symmetric positive definite, there exists a
Cholesky Factorization of A as in [17], call it U, which is
upper triangular such that

A=U'U. (75)

U is nonsingular, since taking the determinant of both sides
of (75) gives det(A) = det?(U). If U is singular then
det (A) = 0 which contradicts the assumption. And hence
define

B =Ut BU! (76)

o =Ut cUt (77

E =U"EUL. (78)
Now, if we have (72), Let

T, =UTD; /2. (79)

Then substitute in (72) for T' we get (73). Conversely, if
we have (74) substituting for Ty we get (72). Hence, as in
Appendix D, 7} that satisfies (74) exists if and only if B/, ¢/,
and £’ commute hence

Ut BUTUY cuT = Ut oUuTWwt T BUTE. (80)
Since U is nonsingular
BU WUt 'C =cU Ut B (81)
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and using (75)

BA™C =CA'B. (82)

Similarly for E’, C’, and E’, B’ we get (73).

From the above we can deduce

1) If A, B, C, and E commute we have (73) and (72) are
satisfied with T orthogonal (see Appendix D). Hence,
for A, B, C, and £ commuting is a sufficient condition
but not necessary.

2) To get the conditions (20) to the form (72) we invert
(202) and (20b) with matrices L~! and R~ and then
use C, for L1 and use R~} for A.

3) The case of only two matrices is always satisfied as con-
ditions turn into identities as C' = E = 0. This problem
is equivalent to simultaneous reduction to principle axes
of two quadratic forms [18]. It is also equivalent to the
generalized eigen problem Bv = AAv where A and B
are symmetrical real matrices [19]. A similar procedure
for the two matrices case is given in {17] using Cholesky
factorization and QR decomposition.

4) For the three matrix cases, conditions (73) reduce to
one equation only, as £ = 0. This case is useful for
conductor loss only or dielectric loss only. For dielectric
loss L~ is taken as matrix A in the above formulation
giving (22).

5) The result shows that we can change D, in (72) to the
identity matrix or if required we can equate it to the
eigenvalues of A by substituting 7. D, 72 for T where
D, is a diagonal matrix of eigenvalues of the matrix
A. The square root will exist since A is strictly positive
definite.

APPENDIX D

For {A,} group of real symmetric matrices then

J real orthogonal matrix T such that 7% A; T is diagonal
Vio A,'Aj = Ain V’i, _]

Proof: This tautology is well known in matrix theory and
is proven in many references [20], [21].

For implementations, the method in [21] is used which uses
induction. The direct approach is to diagonalize each matrix by
the QR Decomposition using the Householder method which
is the technique used in most numerical packages for its
efficiency, therefore it will be the easiest to apply. However,
the Threshold Jaccobi method [17] would be more suited since
most of the terms in the matrix TtAn+1T will be zero and it
avoids the need for reordering in each step. n

APPENDIX E

An example is constructed in this Appendix to produce ZY
matrix that is not diagonalizable. Let

_ [102 + 5200

1+
Z = .
1+

100 + 5202 (83)

where Z is complex symmetric and the real and imaginary
parts of Z are symmetric real positive definite matrices.
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The only eigenvalue of Z is 101 + 5201. The matrix Z is
nondiagonalizable with generalized eigenvectors of

such that

o]

1.
U2:[1+J:l
2

101 + j201

[v1 vg]“lZ[Ul 'Ug]:[ 0

(84)

1

101—Fj201}' (85)

Similarly let

146 + 4175

Yy = .
—2(1+7)

—2(1+7)
150 + 5171

(86)

where Y is complex symmetric and the real and imaginary
parts of Y are symmetric real positive definite matrices.
The only eigenvalue of V is 148 + 5173. The matrix Y is

nondiagonalizable with generalized eigenvectors of

-}

S s sl

-

2 e N

-

-

1 1
— 0 o 0
n n
/3 /3
(27r) ) (27r> |i71’(7’L-*1):| _ [ﬂ'(n—l)}
cos | — sin [ — cos sin
n n n n
n n n "
2 2 Vz o 2
(4#) ) (471') 27(n — 1) . [27(n—1)]
cos | — sin [ — o8 sin
n n n n
2 2 V2o 2
(67r> , (67r> 3r(n—1) . [37(n—1)]
cos | — sin | — cos |——=| sin
n n . n ] . on |
n n n n
2 2 2 2
2m{n — 2 — 1) —1)2
coS [——W(n 1)} sin [—Ln 1)} cos {71' ( ) } sin [W( b ]
n n n n
n n n n
2 2 2 2
1
L 0 b 0
i n
/s /3
(2%) _ <27r) {ﬂ'(n~2)} [W(n—2)
cos | — sin { — o8 sin
n n n n
n n n n
2 2 V2 2
(47r> . (27‘1’) 2n(n — 2) . [2n(n—2)
cos | — sin | — cos | ————= sin
n n L n ] L n
n n n n
2 2 V2 e
. (2%) 3n(n —2) . [37m(n
6 sin [ — cos | ———= sin
cos (&) n . n ] | n
n n n n
2 2 2 2
(n— (n — ~1)(n - -1
cos {QW(n 1)] <in {277(71” 1)] cos [W(n )n 2)] sin [W(n )
n

| S

o3

SEN

(96)

7
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1
w2:&[—1+35} (87)
4
such that
. _|148 4 4173 1
[wr  wa] Y] wo] = [ 0 148+j173:l.
(88)

Hence, the product ZY is

—20108 + j47046
175 — 283

175 — 5283

2y = [ ~19542 + j47396] 9)

where ZY is also complex symmetric, i.e., in such case the
matrices Z and Y commute. Still the only eigenvalue of ZY is
—~19825 + j47221. The matrix ZY is nondiagonalizable with
generalized eigenvectors of

o]

s = [175 + h10997 ] (90)
110714
such that
[z1 $2]_1ZY[$1 29)
_1—19825 4 547221 1 1)
- 0 —~19825 + 747221 |
APPENDIX F

For evaluation of matrix R, the assumption of G = 0 is
made and from the formula in {11] for mode ¢

20°V* = RI* 92)

where a; is the attenuation constant for mode i, Vi and TI?
are mode voltages and currents writing (92) in matrix form
where o is the diagonal matrix of attenuation constants. M,
and M; are as in (58)

M,20 = RM;

= R=M!"aM ' (93)
Similarly for matrix G
=G =M"aM;* (94)

where o is the diagonal matrix of attenuation constants.

APPENDIX G

The procedure in [5] is not repeated. Here only the eigenval-
ues and the eigenvectors of the general real symmetric Toeplitz
matrix with rotational symmetry as in (66) will be given. Note
that although such matrix can be diagonalized it will not have
n distinct eigenvalues but rather k eigenvalues where k as
shown below.

2 4
Ap =Ro + 2R; cos (Lp> + 2R5 cos (%)
n

6 2k
+ 2R3 cos (—Z—p> + -+ 2Ry, cos (_gjj)
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where
n+2
" 5 n even
= 1
z ;r n o0dd.

The eigenvectors are paired, each two for a single eigenvalue
with the exception of the two cases where p = 0 and p = n/2
for even n, n being the order of the matrix. Hence the
orthogonal matrix that congruence diagonalizes M, as in (66),
will have a different shape depending whether n is even or odd.
For n odd T will be of the form (96), shown on the previous
page. The constant vector in first column in the above matrix
is due to p = 0. For even n at p = n/2 the eigenvector
corresponding to the sine function will be identically zero and
the cosine vector will be a constant vector with alternating
sign. For n even T will be of the form (97), shown at the
bottom of the previous page.
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